Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats.
نویسندگان
چکیده
In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80 degrees C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90 degrees C, and a Chloroflexus mat is formed at 65 to 70 degrees C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and one Chloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in the Chloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter(-1)) below 70 degrees C, whereas Aquificales were dominant in the high-sulfide spring (12 mg liter(-1)) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.
منابع مشابه
Diversification of Bacterial Community Composition along a Temperature Gradient at a Thermal Spring
To better understand the biogeography and relationship between temperature and community structure within microbial mats, the bacterial diversity of mats at a slightly alkaline, sulfide-containing hot spring was explored. Microbial mats that developed at temperatures between 75-52°C were collected from an area of approximately 1 m(2) in Nakabusa, Nagano, Japan. Bacterial 16S rRNA genes from the...
متن کاملJ. Gen. Appl. Microbiol., 48, 211–222 (2002)
Dense microbial mats and/or streamers of various colors (white, yellow, pink, purple, orange, red, green, etc.) develop in neutral or alkaline hot springs as follows: The color is determined by interaction between microbes in hot springs and physicochemical factors such as temperature, pH, sulfur and light (Brock, 1978; Castenholz, 1988; Hanada et al., 1995; Hiraishi et al., 1999; Jørgensen and...
متن کاملA natural view of microbial biodiversity within hot spring cyanobacterial mat communities.
This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none o...
متن کاملProduction and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium
Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for micro...
متن کاملIsolation and Characterization of Hyperthermophilic Nanobacteria from a Hot Spring in Ardabil, Iran
ABSTRACT Background and Objective: Nanobacteria are nanometer-scale particles with different shapes, which have been a subject of debate in modern microbiology. They belong to a proposed class of living organisms, specifically cell-walled microorganisms with a size much smaller than the generally accepted lower limit for life. Since some microorganisms are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 7 شماره
صفحات -
تاریخ انتشار 2000